skip to main content


Search for: All records

Creators/Authors contains: "Schuetz, A. N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aims

    Wound infections involving Candida albicans can be challenging to treat because of the fungus’ ability to penetrate wound tissue and form biofilms. The goal of this study was to assess the activity of a hypochlorous acid (HOCl)-generating electrochemical scaffold (e-scaffold) against C. albicans biofilms in vitro and on porcine dermal explants (ex vivo).

    Methods and Results

    C. albicans biofilms were grown either on acrylic-bottom six-well plates (in vitro) or on skin tissue excised from porcine ears (ex vivo), and the polarized e-scaffold was used to generate a continuous supply of low concentration HOCl near biofilm surfaces. C. albicans biofilms grown in vitro were reduced to undetectable amounts within 24 h of e-scaffold exposure, unlike control biofilms (5·28 ± 0·034 log10 (CFU cm-2); P < 0·0001). C. albicans biofilms grown on porcine dermal explants were also reduced to undetectable amounts in 24 h, unlike control explant biofilms (4·29 ± 0·057 log10 (CFU cm-2); P < 0·0001). There was a decrease in the number of viable mammalian cells (35·6 ± 6·4%) in uninfected porcine dermal explants exposed to continuous HOCl-generating e-scaffolds for 24 h compared to explants exposed to nonpolarized e-scaffolds (not generating HOCl) (P < 0·05).

    Conclusions

    Our HOCl-generating e-scaffold is a potential antifungal-free strategy to treat C. albicans biofilms in chronic wounds.

    Significance and Impact of the Study

    Wound infections caused by C. albicans are difficult to treat due to presence of biofilms in wound beds. Our HOCl producing e-scaffold provides a promising novel approach to treat wound infections caused by C. albicans.

     
    more » « less